

VALUE BASED ANALYSIS: A STUDY ON LEADING INDIAN CEMENT FIRMS

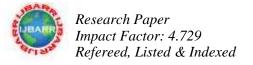
Sri Ayan Chakraborty

Faculty of Management, University Program, Institute of Computer Accountants.

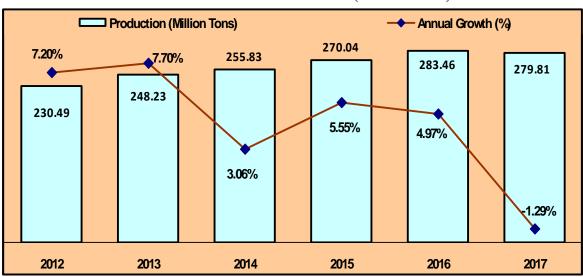
Abstract

Value Based Analysis or Management is a continuing process which focuses in maximising Shareholders' Wealth. It is applied to evaluate the financial performance as well as the shareholders' value created. Traditional based measures do not take into consideration a firm's cost of capital, and are therefore considered inappropriate in evaluating value creation. Moreover, these measures are based almost exclusively on information obtained from financial statements, and so are exposed to accounting distortions. Despite these limitations analysts and investors still widely apply the traditional measures. On the other hand, as a result of the perceived limitations of traditional measures, value based financial performance measures were developed.

In compare to traditional methods value based measures report high levels of correlation between the Profitability and Market Return. In those cases where these measures yield positive values, economic profits are generated, and consequently shareholder value is expected to increase. Negative values indicate the destruction of shareholder value.


Economic Value Added (EVA), Market Value Added (MVA), Enterprise Value (EV) are considered as important criterion for evaluation of internal performance and total return of Shareholders. On the other hand, stock return is another key factor in decisions of the stock. It provides some information which has been used by many potential and actual investors for financial analysis and prediction. Value Added Analysis is a measure of true economic performance of a company and a strategy for creating shareholder wealth. Investing in projects where the return exceeds the cost of capital results in value creation, while investing in projects with returns below the cost of capital destroys value.

EVA is the difference between Net Operating Profit After Tax and Cost of Equity multiplied by Capital Employed. MVA is the difference between Market Value of Equity and Shareholders Fund while EV is the difference between Market Cap plus Market Value of Debt and Cash & Cash Equivalents. The study aims at evaluating the relationship between EVA, MVA, EV, PAT, NOPAT & EPS, MPS, ROCE, ROE, ROA to Capital Employed as well as the variance analysis between EPS, ROCE, ROE and EVA, of Leading Indian Cement players.


Keywords: NOPAT, EVA, Market Cap, MPS, EPS, MVA, EV, CFROI, ROCE and ROE.

Indian Cement Sector & the Market Leaders

Indian Cement Industry has the second largest market in the world after China with production of 279.81 million tons per annum. The Cement Industry comprises of 210 large and 365 mini cement plants. Cement is a cyclical commodity with a high correlation with GDP. The demand for cement in real estate sector is spread across rural housing (40%), urban housing (25%) and construction/infrastructure/industrial activities (25%). While the rest 10% demand is contributed by commercial real estate sector. The growth in the Real Estate sector has played a positive role behind the

development in the Cement Sector. Cement demand is expected to reach 550 to 600 Million Tonnes Per Annum (MTPA) by 2025.

Exhibit - 1: Annual Production (Million Tons)

Ultratech Cement

Headquartered in Mumbai, Ultra-Tech Cement Ltd was founded in 1983. It has a production capacity of 93 million tonnes per annum (MTPA) of grey cement. It operates across India, Bangladesh, Bahrain, UAE, and Sri Lanka. For white cement segment, it adopts the brand name of Birla White.

ACC

Headquartered in Mumbai, Associated Cement Companies Limited was founded in 1936. It is the second largest Indian cement company with annual production capacity of 33.42 million tonnes. It operates with more than 40 ready mix concrete plants, 21 sales offices, and several zonal offices.

Ambuja Cement

Headquartered in Mumbai, Ambuja Cements Ltd was founded in 1983 and stated its production in 1986. It is the third largest Indian cement company with annual production capacity of 29.65 million tonnes. It has 5 integrated cement manufacturing plants and 8 cement grinding units.

Shree Cements

Headquartered in Kolkata, Shree Cements Limited was founded in1979 in Bewar in the Ajmer district of Rajasthan. It is the fourth largest Indian cement company with annual production capacity of 13.5 million tonnes. It has 6 cement manufacturing plants located at Beawar, Ras, Khushkhera, Jobner (Jaipur) and Suratgarh in Rajasthan and Laksar (Roorkee) in Uttarakhand.

Ramco Cement

Headquartered in Chennai Ramco was founded in 1984. It is the fifth largest Indian cement company with annual production capacity of 16.45 million tonnes. It has 8 manufacturing plants including grinding unit. It also produces Ready Mix Concrete and Dry Mortar products.

India Cements

IJBARR E- ISSN -2347-856X ISSN -2348-0653

Headquartered in Tirunelveli, The India Cements Limited was founded in1946. It is the sixth largest Indian cement company with annual production capacity of 15.5 million tonnes. It manufactures cement for various applications, including, precast concrete items, concrete components, and multi-storey buildings, as well as runways, concrete roads, bridges and for general-purpose use. It has 8 integrated cement plants and 2 grinding units.

Prism Cement

Prism Cement Limited is India's 8th leading integrated Building Materials Company, with a wide range of products from cement, ready-mixed concrete, tiles, and bath products to kitchens. The company has three Divisions Prism Cement, H & R Johnson (India), and RMC Readymix (India).

Binani Cement

Headquartered in Mumbai, Binani was founded in the year 1872. It is the seventh largest Indian cement company with annual production capacity of 11.25 million tonnes. It has 2 integrated plants, one in India and another in China, and grinding units in Dubai.

Birla Corp

M.P Birla is one of the top Industrial groups in India. It offers wide range of products including auto interiors, cables, jute, cement etc. The group include companies like Vindhya Telelinks Ltd, Universal-ABB Power Cables Ltd, Universal Cables Ltd, Hindustan Gum & Chemicals Ltd etc.

Jk Cement

Headquartered in Mumbai, J.K Cement Ltd was founded by Lala Kamlapat Singhania. It is one of the top manufacturers of white cement in India. It has 3 cement production plants located in Karnataka, Andhra Pradesh, and Maharashtra. It produces 2 types of cements namely Portland Slag Cement, Ordinary Portland Cement and Ground Granulated Blast Furnace Slag.

Objectives of The Study

- 1. To analysis the profitability position of some selected Cement Companies like Ultratech Cement, ACC, Ambuja Cement, Shree Cement, India Cement, Prism Cement, Binani Cement, Ramco Cement, Birla Corp, JK Cement.
- 2. To know the overall efficiency and performance of the firm through financial analysis.
- 3. To highlight the financial performance and return of the selected companies using Value Based Analysis.

Review of Literature

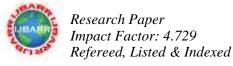
The researcher and economists have recognized that the measurement of profitability in Cement Sector is necessary to analyse and improve the financial performance of the sector. A large number of studies have been conducted in the field of Value based Management. A brief review of some of these studies has been presented.

In order to overcome the limitations of accounting based measures of financial performance, Joel Stern, managing partner of M/s Stern Stewart & Co. introduced a modified concept of economic profit in 1990 in the name of Economic Value Added (EVA) as measure of business performance. Stern (1990) observed that EVA as a performance measure captures the true economic profit of an organization.

EVA-based financial management and incentive compensation scheme gives manager better quality information and superior motivation to make decisions that will create the maximum shareholders' wealth in an organization. EVA is a performance measure which is most closely linked to the creation of shareholders' wealth over a period of time. The financial management and the incentive compensation system based on EVA give the manager superior information and higher motivation. Accordingly EVA should be made the focal point for financial reporting, planning, and decision-making. The executives of an organization should look out for appropriate techniques that will guard them against any future attacks by corporate marauders. The best way of maximizing shareholder return is to offer incentives to managers for making decisions that boost long-term value. A major step is to provide cash bonus or stock option arrangements with incentives to that create built-in share value. The objective is to motivate the managers to look beyond short-term measures of economic performance by essentially turning managers into owners. The managers may be guided by EVA and pursue such objectives that improve operating profits investing more capital. Managers can be remunerated a proportion of both the total EVA and the positive change in EVA.

Stewart (1994) has expended that EVA is a powerful new management tool that has gained worldwide recognition as the standard tool of corporate performance. EVA presents an integrated framework of financial management and incentive compensation. The adoption of EVA system by more and more companies throughout the world clearly depicts that it provides an integrated decision-making framework, can reforms energies and redirect resources to create sustainable value for companies, customers, employees, shareholders and for managements.

Huang and Liu (2010) represented that the traditional accounting performance measures (Return of Equity, Earnings Per Share) only reflected short-term performance, and were unable to express an enterprise's long-term value. The sample of their study included a list of high-technology firms in Taiwan and China from 1998 - 2008.


They used the ordinary least squares method to test their hypothesis. Empirical results of their study showed that the account receivables and account payables from related-party transactions of high-technology firms in Taiwan exhibited a significant (positive) relationship with performance. However, the sales or purchases of goods from related party transactions of high-technology firms in China had a significant (negative) relationship with performance. They used Market value added (MVA), which was a powerful method for explaining market value.

Rice (1996) believes that there is a direct relationship between EVA improvement and a higher share price. EVA has been made a part of Varity's mantra company for building corporate culture and creating wealth for shareholders.

Specific ways that EVA has been applied at Varity Company include:

- 1. EVA caused the company to take a closer look at its capital structure.
- 2. EVA identifies operations and projects that return more than the cost of capital.
- 3. EVA is used to evaluate potential joint ventures and
- 4. EVA provides a means of determining whether the sale of businesses or assets is in the best interest of shareholders.

Rajeshwar (1997) offered in his study that EVA can also be used as a device for shareholders' communication and manager incentive system, apart from measuring the financial performance of organization. Demand for EVA among the corporate world has spurred competition among financial consultants, who help in computing EVA of business organizations.

IJBARR E- ISSN -2347-856X ISSN -2348-0653

Banerjee (1997) has conducted an empirical research to find the superiority of EVA over other traditional financial performance measure. Ten industries were chosen and each industry was represented by four/five companies. ROI and EVA have been calculated for sample companies and a comparison of both has been undertaken, showing the superiority of EVA over ROI. Indian companies are gradually recognizing the importance of EVA.

Scope of Study

The financial statement is a mirror, which reflects the financial position and operational strength and weakness of concern. But a mere look at the financial statement will not reveal some crucial information. To bring out the hidden information, financial statements over a period are to be studied. The study is concerned with the analysis of NOPAT, EVA, Market Cap, MPS, EPS, MVA, EV, CFROI of 10 Leading Indian Cement Companies.

Period of Study: The study covers a period of 6 years from 2011-12 to 2016-17.

Methodology

Sources of Data

The study is based on secondary data. Information required for the study has been collected from the Annual Reports of Ultratech Cement, ACC, Ambuja Cement, Shree Cement, India Cement, Prism Cement, Binani Cement, Ramco Cement, Birla Corp, JK Cement and different books, journal, magazines, and data collected from various websites.

Tools Applied

In this study various tools: Financial Tools – Ratio Analysis and Statistical Tools (i.e.) Mean and ANOVA, t-test has been used for data analysis.

MEAN = **Sum** of variable/N

Standard Deviation is used to see how measurements for a group are spread out from Mean. A low Standard Deviation means that most of the numbers are very close to the average and vice-versa. $(SD) = X^2/N-(X/N)$

Coefficient of Variation is a standardized measure of dispersion of a probability distribution or frequency distribution. It is the ratio of standard deviation to mean. Higher the coefficient of variation, the greater the level of dispersion around mean and vice-versa. **Coefficient of Variation** (COV) = **SD/MEAN* 100**

t-Test (Two-Sample Assuming Unequal Variances): t-test assesses whether the means of two groups are statistically different from each other.

Hypothesis

An ANOVA is statistical hypothesis in which the sampling distribution of test statistic when null hypotheses is true. Null hypotheses have been set and adopted for the analysis of data. The null hypotheses are represented by H_0 . It is a negative statement which avoids personal bias of investigator during data collection as well as the time of drawing conclusion.

Limitation of The Study

- 1. The study is related to a period of 6 years.
- 2. Data is secondary i.e. they are collected from the published Annual Reports
- 3. Profitability, Structural and Valuation ratios have been taken for the study.

Preface

The important goal of financial management is to create highest capital employees (owners & lenders) wealth and consequently enhancing the value of the firm. The question arises about the method to evaluate a firm's value. In answer to this question, it can be said, various accounting based measures like Earning Per Share (EPS), Return on Equity (ROI); Return on Capital Employed (ROCE) and growth in sales have been used to evaluated the performance of the business. But the problem with these performance measures is that they lack a proper benchmark for comparison. The shareholders require at least a minimum rate of return that the above mentioned performance measures ignore. EVA is an estimation of firm's economic profit or value generated over the generated over the required rate of return.Profit is the prime motive of every business. It plays a pivotal role behind the success and growth of an enterprise. Profitability is the main base for liquidity as well as solvency. Analysing a company's profitability is an important part of financial statement analysis. Profitability of a company measures the ability to generate earnings.

EVA & its Constituents

EVA is a measure based on the Residual Income technique that serves as an indicator of the profitability of projects undertaken. Its underlying premise consists of the idea that real profitability occurs when additional wealth is created for shareholders and that projects should create returns above their cost of capital.

EVA = EVA = NOPAT - (WACC * Capital Employed)

To understand and calculate EVA we have to calculate NOPAT, Capital Employed, Debt Equity Ratio and Weighted Average Cost of Capital.

Net Operating Profit after Tax (NOPAT) is a measure of profit that excludes the costs and tax benefits of debt financing. It is used by analysts and investors as a precise and accurate measurement of profitability to compare a company's financial results across it's over years as well as peer group.

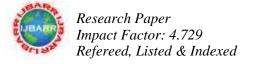

Year	Ultratech	ACC	Ambuja	Shree	India	Prism	Binani	Ramco	Birla Corp	JK Cement
2011-12	23,526	13,737	12,668	8,362	5,497	1,802	1,371	5,054	2,780	2,823
2012-13	26,697	11,357	13,477	11,801	4,964	2,060	1,967	5,392	3,225	3,389
2013-14	26,647	11,840	13,358	9,126	1,653	2,840	- 15,354	2,930	2,073	2,051
2014-15	25,151	12,356	15,418	5,528	4,714	3,091	-3,131	4,017	2,435	3,697
2015-16	27,826	6,254	8,737	12,169	5,213	3,066	11,533	7,036	2,403	3,301
2016-17	27,822	6,481	15,216	14,536	4,810	2,093	5,302	7,478	4,903	4,832
Mean	26,278	10,338	13,146	10,254	4,475	2,492	281	5,318	2,970	3,349
SD	1,670	3,177	2,420	3,212	1,411	571	9,077	1,737	1,025	926
COV	0.06	0.31	0.18	0.31	0.32	0.23	32.27	0.33	0.35	0.28
CAGR	3.4	-14.0	3.7	11.7	-2.6	3.0	31.1	8.2	12.0	11.4

Exhibit -	- 2: Ne	t Operating	g Profit After Ta	X
-----------	---------	-------------	-------------------	---

Exhibit-2 depicts that Ultratech reported the highest mean value and COV in terms of NOPAT followed by Ambuja, ACC, Shree Cement etc. Binani reported the highest CAGR of 31.1%. ACC & India Cement reported a negative CAGR.

Hypothesis:

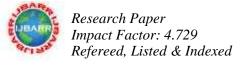
H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$ (NOPAT of Cement Companies doesn't differ over years)

	$H_1: u_1 u_2$	U3 U4	u5 u	6 U 7	Us Ug	u ₁₀ (NOPAT of Cement C	Companies differ over years)
--	----------------	-------	------	-------	-------	------------------------------------	------------------------------

	ANOVA: Single Factor									
Groups	Count	Sum	Average	Variance						
Ultratech Cement	6	1,57,669.1	26,278.2	27,87,281.2						
Acc	6	62,025.3	10,337.5	1,00,95,136.8						
Ambuja Cement	6	78,874.1	13,145.7	58,55,207.9						
Shree Cement	6	61,521.3	10,253.5	1,03,15,049.1						
India Cement	6	26,851.4	4,475.2	19,91,902.6						
Prism Cement	6	14,952.5	2,492.1	3,26,164.2						
Binani Cement	6	1,687.7	281.3	8,23,90,454.1						
Ramco Cement	6	31,906.5	5,317.7	30,17,674.8						
Birla Corp	6	17,819.8	2,970.0	10,50,265.7						
Jk Cement	6	20,092.1	3,348.7	8,57,037.9						

Exhibit – 3: Net Operating Profit After Tax: Anova ANOVA: Single Factor

Anova: Variation


Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	3,16,47,69,889.2	9	35,16,41,098.8	29.62781	0.000000000000000046	2.073351
Within Groups Total	59,34,30,871.6 3,75,82,00,760.7	50 59	1,18,68,617.4			

Above analysis shows that the F value (29.62781) is more than the table value (2.073351) therefore null hypothesis is rejected. Therefore it is concluded that Net Operating Profit after Tax (NOPAT) of the Cement Companies differs over the years

Capital Employed

Capital employed is the total amount of capital that a company has utilized in order to generate profits. It is the sum of shareholders' equity and debt. It can also be simplified as total assets minus current liabilities.

Year	Ultratech	ACC	Ambuja	Shree	India	Prism	Binani	Ramco	Birla Corp	JK Cement
2011-12	1,76,677	74,851	81,154	35,517	56,898	23,250	38,431	35,511	29,981	25,188
2012-13	2,03,987	74,575	88,367	42,867	61,232	24,500	35,789	37,638	33,504	27,548
2013-14	2,32,027	78,134	94,953	51,575	56,476	25,611	35,300	39,793	34,454	42,022
2014-15	2,50,993	82,177	1,01,016	62,706	74,688	27,918	46,916	44,465	39,304	43,182
2015-16	2,68,422	84,211	1,02,950	73,762	72,033	27,240	44,631	41,933	37,150	44,678
2016-17	3,07,625	86,415	1,95,690	82,167	76,620	24,544	39,222	43,084	73,541	46,697
Mean	2,39,955	80,061	1,10,688	58,099	66,324	25,510	40,048	40,404	41,322	38,219
SD	46,631	4,961	42,419	18,058	9,169	1,781	4,736	3,405	16,103	9,342
COV	0.19	0.06	0.38	0.31	0.14	0.07	0.12	0.08	0.39	0.24
CAGR (%)	11.7	2.9	19.2	18.3	6.1	1.1	0.4	3.9	19.7	13.1

Exhibit-4 depicts that in terms of Mean Value, Ultratech Cement have the maximum amount of Capital of Rs 2,39,955 Millions. ACC reorted minimum COV followed by Prism, Ramco Cements etc. Birla Corp reported the highest CAGR of 19.7%, followed by Ambuja Cement of 19.2%

Hypothesis

H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$ (D/E Ratio of Cement Companies doesn't differ over years) **H**₁: $\mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ \mu_6 \ \mu_7 \ \mu_8 \ \mu_9 \ \mu_{10}$ (D/E Ratio of Cement Companies differ over years)

ANOVA: Single Factor								
Groups	Count	Sum	Average	Variance				
Ultratech Cement	6	14,39,729.8	2,39,955	2,17,44,08,938				
Acc	6	4,80,363.1	80,060.5	2,46,06,789				
Ambuja Cement	6	6,64,130.1	1,10,688.4	1,79,93,76,315				
Shree Cement	6	3,48,594	58,099	32,60,74,206				
India Cement	6	3,97,947	66,324.5	8,40,64,345				
Prism Cement	6	1,53,062	25,510.3	31,72,598.2				
Binani Cement	6	2,40,287.8	40,048	2,24,32,174.1				
Ramco Cement	6	2,42,424.7	40,404.1	1,15,95,166.9				
Birla Corp	6	2,47,933.7	41,322.3	25,92,90,593.2				
Jk Cement	6	2,29,315.7	38,219.3	8,72,71,184.1				

Exhibit – 5: Capital Employed (In Millions): Anova ANOVA: Single Factor

ANOVA: VARIATION

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	2,17,29,77,73,726	9	24,14,41,97,081	50.38131	5.37E-22	2.073351
Within Groups	23,96,14,61,547	50	47,92,29,231			
Total	2,41,25,92,35,273	59				

Above analysis shows that the F value (50.38131) is more than the table value (2.073351) therefore null hypothesis is rejected. Therefore it is concluded that Capital Employed of Cement Companies differs over years.

Debt Equity Ratio

It measures the total Debt of a company as a percentage of Equity share holders fund. A high Debt Equity ratio indicates high amount of Interest expenses which has to be paid irrespective of the profit volume. **Debt Equity Ratio = Total Debt / Equity Share Holders Fund**

					v Bquit	U	· /			
Year	Ultratech	ACC	Ambuja	Shree	India	Prism	Binani	Ramco	Birla Corp	JK Cement
2011-12	0.38	0.07	0.01	0.30	0.44	0.84	8.66	0.73	0.33	0.65
2012-13	0.34	0.01	0.0045	0.12	0.53	1.04	18.39	0.59	0.37	0.62
2013-14	0.35	0	0.0035	0.09	0.66	1.30	-13.20	0.62	0.36	1.39
2014-15	0.27	0	0.0031	0.07	0.51	1.41	-27.79	0.63	0.39	1.71
2015-16	0.22	0	0.0023	0.08	0.42	1.18	-7.74	0.34	0.27	1.80
2016-17	0.26	0	0.0012	0.07	0.47	0.94	-3.57	0.13	1.23	1.65
Mean	0.30	0.014	0.0035	0.12	0.51	1.12	-4.21	0.51	0.49	1.30
SD	0.06	0.03	0.0018	0.09	0.09	0.22	16.29	0.22	0.36	0.53
COV	0.20	2.07	0.51	0.74	0.17	0.19	-3.87	0.44	0.74	0.41
CAGR (%)	-7.1	-100	-28.1	-25.8	1.1	2.2	-183.8	-28.7	29.6	20.3

Exhibit – 6: Debt Equity Ratio (D/E)

Exhibit-6 depicts that in terms of Mean Value, both Ramco & India Cement have the maximum Debt Equity ratio of 0.51, followed by Birla Corp (0.49). Binani have negative D/E ratio since FY 2013-14. Birla Corp reported the highest CAGR of 29.6%. Ultratech, ACC, Ambuja, Shree Binani & Ramco Cement reported a negative CAGR.

Hypothesis

H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$ (D/E Ratio of Cement Companies doesn't differ over years) **H**₁: $\mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ \mu_6 \ \mu_7 \ \mu_8 \ \mu_9 \ \mu_{10}$ (D/E Ratio of Cement Companies differ over years)

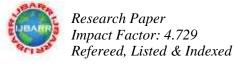

	11110	vn. bingie race	.01	
Groups	Count	Sum	Average	Variance
Ultratech Cement	6	1.82	0.3041	0.00364
Acc	6	0.08	0.0140	0.00084
Ambuja Cement	6	0.021	0.0035	0.000003
Shree Cement	6	0.72	0.1206	0.00797
India Cement	6	3.03	0.5052	0.00728
Prism Cement	6	6.72	1.1197	0.04745
Binani Cement	6	-25.25	-4.2080	265.21
Ramco Cement	6	3.04	0.5075	0.0506
Birla Corp	6	2.94	0.4906	0.1311
Jk Cement	6	7.82	1.3034	0.2830

Exhibit – 7: Debt Equity Ratio: Anova ANOVA: Single Factor

Anova: Variation

				-		
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	129	9	14	0.53981	0.838385461	2.073351
Within Groups	1,329	50	27			
Total	1,458	59				

Above analysis shows that the F value (0.53981) is less than the table value (2.073351) therefore null hypothesis is accepted. Therefore it is concluded that Debt Equity Ratio (D/E) of the Cement Companies doesn't differ over the years

IJBARR E- ISSN -2347-856X ISSN -2348-0653

Weighted Average Cost of Capital (WACC)

It is the average of the costs of various sources of financing. It is also known as composite or overall or average cost of capital. After computing the cost of individual sources of finance, the weighted average cost of capital is calculated by putting weights in the proportion of the various sources of funds to the total funds. WACC = Proportion of Equity * K_E + Proportion of Debt * K_D * (1-t) K_E = Cost of Equity, K_D * (1-t) = Post Tax Cost of Debt

Year	Ultratech	ACC	Ambuja	Shree	India	Prism	Binani	Ramco	Birla Corp	JK Cement
2011-12	10.26	13.67	13.61	27.86	16.72	12.67	7.31	10.85	8.37	11.34
2012-13	7.95	13.51	14.82	41.65	14.80	12.33	9.85	10.76	10.57	12.50
2013-14	13.16	14.74	14.97	31.30	14.54	14.17	11.20	11.13	9.78	7.55
2014-15	15.76	16.26	18.16	31.57	21.29	13.87	8.27	12.20	13.76	9.58
2015-16	14.09	14.36	16.01	23.60	21.22	16.25	7.31	12.90	12.34	10.16
2016-17	13.39	15.61	17.70	31.07	20.57	16.13	3.33	16.31	8.39	9.88
Mean	12.43	14.69	15.88	31.17	18.19	14.23	7.88	12.36	10.54	10.17
SD	2.83	1.08	1.77	5.97	3.21	1.66	2.70	2.11	2.17	1.68
COV	0.23	0.07	0.11	0.19	0.18	0.12	0.34	0.17	0.21	0.17
CAGR (%)	5.5	2.7	5.4	2.2	4.2	4.9	-14.6	8.5	0.03	-2.7

Exhibit – 8: Weighted Average Cost of Capital (Wacc %)

Exhibit-8 depicts that in terms of Mean Value, Shree Cement have the maximum WACC of 31.17%. In terms pf COV ACC reported the minimum value of 7%, followed by Ambuja, Prism etc. Ramco Cement reported the highest CAGR of 8.5%, while Binani Cement reported a negative CAGR.

Hypothesis

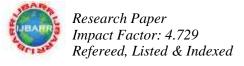
H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$ (WACC of Cement Companies doesn't differ over years) **H**₁: $\mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ \mu_6 \ \mu_7 \ \mu_8 \ \mu_9 \ \mu_{10}$ (WACC of Cement Companies differ over years)

	ANOVA:	Single Factor	r	
Groups	Count	Sum	Average	Variance
ULTRATECH CEMENT	6	74.60	12.43	8.02
ACC	6	88.13	14.69	1.17
AMBUJA CEMENT	6	95.27	15.88	3.13
SHREE CEMENT	6	187.05	31.17	35.65
INDIA CEMENT	6	109.14	18.19	10.29
PRISM CEMENT	6	85.40	14.23	2.77
BINANI CEMENT	6	47.27	7.88	7.29
RAMCO CEMENT	6	74.15	12.36	4.46
BIRLA CORP	6	63.22	10.54	4.71
JK CEMENT	6	61.03	10.17	2.82

Exhibit - 9: Weighted Average Cost of Capital (%): Anova

	Anova: Variation											
Source of Variation	SS	df	MS	F	P-value	F crit						
Between Groups	2,281	9	253	31.55807	1.26E-17	2.073351						
Within Groups	402	50	8									
Total	2,683	59										

Above analysis shows that the F value (31.55807) is more than the table value (2.073351) therefore null hypothesis is rejected. Therefore it is concluded that WACC of Cement Companies differs over years.


Economic Value Added (EVA)

Economic Value Added (EVA) concept, developed by Stern Stewart in 1990's has been considered as a financial measure and referred as economic profit or residual income by economists. It is directly linked to the creation of shareholders wealth over time and is used to analyse the financial performance and to capture the Economic Profit of an entity. It provides a unique insight into value creation and unites the finance theory with competitive strategy framework. EVA focuses the economic profit as against accounting profit. Cost of equity share capital is the return expected by the Equity Share holders for their investments and the risks undertaken by them. Cost of debt is the cost involved in procuring fund from any fixed income bearing securities. These costs were not considered by the financial managers while computing the profit of the company earlier, hence a proper justification could not be found between Accounting and Economic Profit. Economists do take all such costs including opportunity costs in order to compute a firm's earnings. Thus profits of a business differ in financial manager's view point and that of an economist's view point.

EVA, in general does not take into account if a company is making profit or loss. It considers the earnings that remain after all costs from all resources are taken into account including opportunity cost of capital. Opportunity cost for equity capital means the cost that is incurred to compensate the equity shareholders at a market determined rate of return.

Year	Ultratech	ACC	Ambuja	Shree	India	Prism	Binani	Ramco	Birla Corp	JK Cement
2011-12	5,396	3,508	1,620	-1,533	-4,018	-1,143	-1,437	1,202	269	-35
2012-13	10,489	1,285	384	-6,051	-4,097	-960	-1,560	1,342	-317	-55
2013-14	-3,886	325	-853	-7,018	-6,556	-788	-19,306	-1,497	-1,297	-1,123
2014-15	-14,397	- 1,006	-2,929	-14,269	-11,185	-781	-7,013	-1,410	-2,973	-442
2015-16	-9,987	- 5,837	-7,751	-5,236	-10,072	-1,359	8,269	1,627	-2,182	-1,240
2016-17	-13,383	- 7,007	-19,419	-10,994	-10,954	-1,864	3,998	449	-1,264	218
Mean	-4,295	- 1,455	-4,824	-7,517	-7,814	-1,149	-2,841	285	-1,294	-446
SD	10,293	4,136	7,869	4,496	3,350	414	9,616	1,402	1,184	609
COV	-2.40	-2.84	-1.63	-0.60	-0.43	-0.36	-3.38	4.91	-0.91	-1.36
CAGR (%)	-219.9	- 214.8	-264.3	48.3	22.2	10.3	-222.7	-17.9	-236.2	-244.5

Exhibit – 10: Economic Value Added (Eva)

Exhibit-10 depicts that Ramco Cement reported the highest mean value in terms of EVA. All others companies reported negative EVA. Shree Cement reported a CAGR of 48.3%, followed by India, Prism Cement, while others reported a negative CAGR.

Hypothesis

H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$ (EVA of Cement Companies doesn't differ over years) **H**₁: $\mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ \mu_6 \ \mu_7 \ \mu_8 \ \mu_9 \ \mu_{10}$ (EVA of Cement Companies differ over years)

	ANOV	A: Single F	actor	
Groups	Count	Sum	Average	Variance
Ultratech Cement	6	-25,767.8	-4,294.6	10,59,40,191.1
Acc	6	-8,731.0	-1,455.2	1,71,07,305.0
Ambuja Cement	6	-28,946.7	-4,824.5	6,19,20,691.3
Shree Cement	6	-45,101.3	-7,516.9	2,02,16,353.8
India Cement	6	-46,883.2	-7,813.9	1,12,25,527.2
Prism Cement	6	-6,896.6	-1,149.4	1,71,421.9
Binani Cement	6	-17,048.7	-2,841.5	9,24,65,916.5
Ramco Cement	6	1,712.9	285.5	19,66,921.7
Birla Corp	6	-7,764.3	-1,294.0	14,01,832.6
Jk Cement	6	-2,676.5	-446.1	3,70,333.1

Exhibit – 11: Eva: Anova

ANOVA: Variation

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	44,67,67,328.4	9	4,96,40,814.3	1.58705	0.144916436782	2.073351
Within Groups	1,56,39,32,471.0	50	3,12,78,649.4			
Total	2,01,06,99,799.4	59				

Above analysis shows that the F value (3.03994) is more than the table value (2.073351) therefore null hypothesis is rejected. Therefore it is concluded that Economic Value Added (EVA) of the Cement Companies differs over the years

Market Value Added (MVA)

MVA focuses on how well a firm has maximized shareholder value since its inception. It offers a judgment on the company's past, present and future use of investment capital. A higher number is better because it shows that shareholder value has increased over the life of the company. It is an aggregate figure because it provides information on the company as a whole. Companies with high MVA are attractive to investors because it indicates about positive returns as well as strong leadership, sound governance. MVA can be interpreted as the amount of wealth that management has created for investors over and above their investment. Companies that are able to sustain or increase MVA over time typically attract more investment, which enhances MVA.

			Eamon – I		v ulue llu		· · · · ·			
Year	Ultratech	ACC	Ambuja	Shree	India	Prism	Binani	Ramco	Birla Corp	JK Cement
2011-12	2,84,660	1,86,864	-54,042	10,94,210	-5,163	12,951	31,203	-16,843	-525	97,537
2012-13	3,59,536	1,45,125	-61,060	13,70,172	-14,230	9,147	27,400	-17,660	-5,703	1,68,704
2013-14	4,27,940	1,86,092	-63,379	19,28,494	-15,388	8,196	25,120	-19,463	-2,924	1,50,219
2014-15	6,08,092	2,16,617	-60,978	36,87,211	-22,236	38,381	30,359	-20,209	2,649	4,51,726
2015-16	6,64,742	1,76,682	-66,785	42,58,503	-24,289	28,050	26,160	-21,818	-749	4,56,390
2016-17	8,49,330	1,86,589	-1,48,479	58,74,333	-2,233	36,635	38,277	-21,958	23,917	6,36,150
Mean	5,32,383	1,82,995	-75,787	30,35,487	-13,923	22,227	29,753	-19,659	2,778	3,26,788
SD	2,12,536	22,987	35,856	18,83,976	8,857	13,831	4,797	2,108	10,721	2,17,639
COV	0.40	0.13	-0.47	0.62	-0.64	0.62	0.16	-0.11	3.86	0.67
CAGR (%)	24.4	0.0	22.4	39.9	-15.4	23.1	4.2	5.4	-314.6	45.5

Exhibit – 12: Market Value Added (MVA)

Exhibit-12 depicts that Shree Cement reported the highest mean value in terms of MVA followed by Ultratech, JK Cement, ACC etc. JK Cement reported a CAGR of 45.5%. India Cement & Birla Corp reported a negative CAGR.

Hypothesis

H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$ (MVA of Cement Companies doesn't differ over years) **H**₁: $\mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ \mu_6 \ \mu_7 \ \mu_8 \ \mu_9 \ \mu_{10}$ (MVA of Cement Companies differ over years)

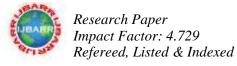

	ANOVA: Single Factor												
Groups	Count	Sum	Average	Variance									
Ultratech Cement	6	31,94,299.30	5,32,383.22	45,17,14,41,349									
Acc	6	10,97,969.16	1,82,994.86	52,83,82,605									
Ambuja Cement	6	-4,54,723.25	-75,787.21	1,28,56,47,237									
Shree Cement	6	1,82,12,923.62	30,35,487.27	35,49,36,45,19,770									
India Cement	6	-83,539.69	-13,923.28	7,84,39,573									
Prism Cement	6	1,33,360.10	22,226.68	19,12,90,231									
Binani Cement	6	1,78,519.06	29,753.18	2,30,08,979									
Ramco Cement	6	-1,17,951.39	-19,658.56	44,43,024									
Birla Corp	6	16,665.44	2,777.57	11,49,34,067									
Jk Cement	6	19,60,725.16	3,26,787.53	47,36,68,94,155									

Exhibit – 13: Mva: Anova

ANOVA: Variation

Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	4,81,62,70,18,85,202	9	53,51,41,13,20,578	14.68502	0.00000000028	2.073351
Within Groups	1,82,20,64,50,04,951	50	3,64,41,29,00,099			
Total	6,63,83,34,68,90,153	59				

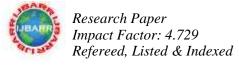
Above analysis shows that the F value (14.68502) is more than the table value (2.073351) therefore null hypothesis is rejected. Therefore it is concluded that Market Value Added (MVA) of the Cement Companies differs over the years

Enterprise Value (EV)

EV is a measure of a company's total value. It looks at the entire market value rather than just the equity value, so all ownership interests and assets claims from both debt and equity are included. Acquisition of assets through cash or issue of shares increases EV, irrespective of its productivity. On the other hand, a reduction in capital intensity, like reduction in the working capital, reduces the EV. EV could also be negative if the company have abnormally high amounts of cash that may not be reflected in the market value of the stock as well as the market capitalization.

Exhibit – 14: Enterprise Value (Ev)

				M = 14. EI		· · uiue				
Year	Ultratech	ACC	Ambuja	Shree	India	Prism	Binani	Ramco	Birla Corp	JK Cement
2011-12	4,59,195	2,60,056	6,380	11,24,740	51,613	35,275	64,799	18,193	25,171	1,18,393
2012-13	5,61,675	2,12,892	4,705	14,08,449	46,900	32,658	60,939	19,439	24,980	1,92,499
2013-14	6,56,481	2,59,168	8,124	19,76,275	41,016	32,700	59,003	19,876	26,507	1,88,154
2014-15	8,55,451	2,95,696	15,415	37,48,932	51,960	65,291	74,552	23,368	37,273	4,90,968
2015-16	9,10,494	2,59,953	7,631	43,31,434	47,387	53,979	69,389	19,204	32,768	4,97,338
2016-17	11,34,467	2,70,220	30,249	59,55,389	74,007	60,370	76,506	19,928	94,333	6,78,574
Mean	7,62,960	2,59,664	12,084	30,90,870	52,147	46,712	67,532	20,001	40,172	3,60,988
SD	2,49,986	26,825	9,628	19,03,473	11,422	14,894	7,168	1,765	26,979	2,25,149
COV	0.33	0.10	0.80	0.62	0.22	0.32	0.11	0.09	0.67	0.62
CAGR (%)	19.8	0.77	36.5	39.6	7.47	11.3	3.4	1.8	30.2	41.8


Exhibit-14 depicts that Shree Cement reported the highest mean value in terms of EV. All others companies reported negative EV. Birla Corp reported a CAGR of 124.1% followed by JK Cement, India and Prism Cement. All other firms had a negative CAGR.

Hypothesis

H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$ (EV of Cement Companies doesn't differ over years) H₁: $\mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ \mu_6 \ \mu_7 \ \mu_8 \ \mu_9 \ \mu_{10}$ (EV of Cement Companies differ over years)

			Al	NOV	/A: Singl	e Factor				
Groups		Count	Su	ım		Average		Vari	ance	
Ultratech	Cement	6	45,77,762.90		7,62,960.48		62,49,30,55,447.41			
Acc		6	1	5,57	,986.04	2,59,664.34		71,95,58,858.76		
Ambuja (Cement	6	72,505.45		12,084.24		9	,27,06,888.71		
Shree Cer	nent	6	1,85,45,219.82		30,90,869	9.97	36,23	3,20,93,93,690.65		
India Cen	nent	6	3,12,882.56		882.56	52,147.	09	1.	3,04,56,242.51	
Prism Cer	nent	6	2,80,271.30		271.30	46,711.88		22,18,33,717.66		
Binani Ce	ement	6	4	4,05,189.37		67,531.	56	5	,13,85,918.13	
Ramco Co	ement	6	1,20		008.61	20,001.4	44		31,16,003.52	
Birla Cor	р	6	2	2,41,	032.31	032.31 40,172.		72	2,78,46,347.63	
Jk Cemen	ıt	6	2	1,65	,925.45	3,60,987.58		50,	69,19,66,774.37	
			L	ANC	OVA: Val	riation				
Source of Variation		SS		df	N	1S		F	P-value	F crit
Between Groups	4,87,41,5	1,08,56,6	71	9	54,15,72,	,34,28,519	14.4	8697	0.00000000036	2.073351
Within Groups	1,86,91,7	0,65,99,4	47	50	3,73,83,4	1,31,989				
Total	6,74,33,2	1,74,56,1	18	59						

Exhibit – 15: Ev: ANOVA

Above analysis shows that the F value (14.48697) is more than the table value (2.073351) therefore null hypothesis is rejected. Therefore it is concluded that Enterprise Value (EV) of the Cement Companies differs over the years

Cash Flow Return on Investment (CFROI)

CFROI is a metric that analyses a company's cash flow in relation to its capital employed. This ratio is used by investors who believe that cash flow is the underlying driver of value in a company, as opposed to earnings or sales. It is most informative when compared to WAAC, as it allows investors to see the discrepancy between the amount a company paid to raise funds and the amount of return a company receives from those funds.

Year	Ultratech	ACC	Ambuja	Shree	India	Prism	Binani	Ramco	Birla Corp	JK Cement
2011-12	0.1915	0.2105	0.1887	0.5424	0.1655	0.1147	0.1356	0.2432	0.0817	0.2064
2012-13	0.1783	0.2114	0.2105	0.2939	0.1195	0.1061	0.1633	0.1864	0.0586	0.1387
2013-14	0.1489	0.1361	0.1335	0.2716	0.0914	0.0221	0.0607	0.1278	0.1041	0.0867
2014-15	0.1669	0.1645	0.1659	0.1975	0.0864	0.0711	-0.0090	0.2095	0.0717	0.0593
2015-16	0.1686	0.1730	0.1512	0.2123	0.1338	0.1697	0.0762	0.2596	0.0670	0.1298
2016-17	0.1623	0.1609	0.1439	0.2679	0.0987	0.2753	0.0917	0.2594	0.0921	0.1626
Mean	0.169	0.176	0.166	0.298	0.116	0.126	0.086	0.214	0.079	0.131
SD	0.014	0.030	0.029	0.126	0.030	0.088	0.060	0.051	0.017	0.053
COV	0.09	0.17	0.18	0.42	0.26	0.69	0.70	0.24	0.21	0.40
CAGR (%)	-3.3	-5.2	-5.3	-13.2	-9.8	19.1	-7.5	1.3	2.4	-4.7

Exhibit – 16: Ca	sh Flow Return	ı On Invest	ment (Cfroi)
L'Amore 10. Cu	SHI I IOW ILCOUT	I OH III (OU	

Exhibit-16 depicts that Shree Cement reported the highest mean value in terms of CFROI followed by Ramco, ACC, Ultratech, Ambuja, JK Cement etc. In terms of CAGR Prism Cement reported the highest followed by Birla Corp, Ramco Cements, others reported a negative CAGR.

Hypothesis

H₀: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7 = \mu_8 = \mu_9 = \mu_{10}$ (CFROI of Cement Companies doesn't differ over years) **H**₁: $\mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ \mu_6 \ \mu_7 \ \mu_8 \ \mu_9 \ \mu_{10}$ (CFROI of Cement Companies differ over years)

Al	NUVA: S	single ra	CLOF	
Groups	Count	Sum	Average	Variance
Ultratech Cement	6	1.0166	0.1694	0.000209
Acc	6	1.0565	0.1761	0.000882
Ambuja Cement	6	0.9936	0.1656	0.000852
Shree Cement	6	1.7856	0.2976	0.015754
India Cement	6	0.6953	0.1159	0.000913
Prism Cement	6	0.7590	0.1265	0.007702
Binani Cement	6	0.5185	0.0864	0.003648
Ramco Cement	6	1.2859	0.2143	0.002642
Birla Corp	6	0.4752	0.0792	0.000285
Jk Cement	6	0.7835	0.1306	0.002768

Exhibit – 17: CFROI: ANOVA ANOVA: Single Factor

		ANU	VA: Varia			
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	0.2280	9	0.02533	7.10354	0.000001526273	2.073351
Within Groups	0.1783	50	0.00357			
Total	0.4062	59				

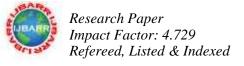
ANOVA: Variation

Above analysis shows that the F value (7.10354) is more than the table value (2.073351) therefore null hypothesis is rejected. Therefore it is concluded that Cash Flow Return on Investment (CFROI) of the Cement Companies differs over the years.

T-Test: It is used to test the null hypothesis that the variances of two populations are not equal. If t Stat value lies between - t Critical two tail and + t Critical two test we don't reject Null Hypothesis.

EVA is an attempt to not just figure out the accounting profit of an organization, but to put an amount on the actual economic value created by the company. After meeting the obligations if the company is left with earnings then it creates a Positive EVA and vice versa. From EVA stand point, if a company is making profits it does not necessarily mean that it is creating positive EVA likewise if a company is making losses it neither means, creation of negative EVA.

	EPS	MPS	ROCE	ROE	ROA	EVA / CE
Mean	88.76734	2619.9667	0.155599	0.137176	0.07251	-0.01
Variance	81.29862	867440.9	0.000629	0.001257	0.00029	0.0
Observations	6	6	6	6	6	6
Pearson Correlation	0.383608	-0.815714	0.955195	0.963969	0.95911	
Hypothesized Mean Difference	0	0	0	0	0	
df	5	5	5	5	5	
t Stat	24.16296	6.890280	19.502	27.31565	7.465317	
P(T<=t) one-tail	1.13E-06	0.000493	3.27E-06	6.15E-07	0.000340	
t Critical one-tail	2.015048	2.015048	2.015048	2.015048	2.015048	
P(T<=t) two-tail	2.26E-06	0.000986	6.54E-06	1.23E-06	0.000681	
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582	


Exhibit - 18: T-Test: Two-Sample Assuming Unequal Variances: Ultratech Cement

EPS & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

 $\overline{H_0: \mu_1^2 = \mu_2^2}$ (There is significant relationship between MPS & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between MPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROA & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

			0	1		EVA /
	EPS	MPS	ROCE	ROE	ROA	CE
Mean	51.43667	1388.133	0.156428	0.123830	0.077635	-0.0157
Variance	253.8953	18918.69	0.002545	0.002126	0.000703	0.0025
Observations	6	6	6	6.000000	6.000000	6.0000
Pearson Correlation	0.947513	-0.34493	0.970716	0.981313	0.970813	
Hypothesized Mean	0	0	0	0.000000	0.000000	
Difference	0	0	0	0.000000	0.000000	
df	5	5	5	5.000000	5.000000	
t Stat	7.93322	24.7179	34.6426	33.792048	9.082581	
P(T<=t) one-tail	0.000256	1.01E-06	1.89E-07	0.000000	0.000135	
t Critical one-tail	2.015048	2.015048	2.015048	2.015048	2.015048	
P(T<=t) two-tail	0.000513	2.02E-06	3.77E-07	0.000000	0.000271	
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582	

Exhibit –19: T-Test: Two-Sample Assuming Unequal Variances: Acc

EPS & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between MPS & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between MPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROA & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

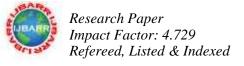

L'Ambit 20		o Dampie II	ssunning On	equal variation	ices: minbuje	•
	EPS	MPS	ROCE	ROE	ROA	EVA / CE
Mean	77.65101	212.4833	0.169771	0.122204	0.086183	-0.03136
Variance	218.3322	1234.291	0.002216	0.001337	0.000802	0.00219
Observations	6	6	6	6	6	6
Pearson Correlation	0.578303	-0.73963	0.943202	0.941361	0.934599	
Hypothesized Mean Difference	0	0	0	0	0	
df	5	5	5	5	5	
t Stat	12.9013	14.8023	31.1378	21.5234	12.688102	
P(T<=t) one-tail	2.49E-05	1.27E-05	3.21E-07	2.01E-06	0.000027	
t Critical one-tail	2.015048	2.015048	2.015048	2.015048	2.015048	
P(T<=t) two-tail	4.98E-05	2.54E-05	6.41E-07	4.02E-06	0.000054	
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582	

Exhibit –20: T-Test: Two-Sample Assuming Unequal Variances: Ambuja

EPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROA & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

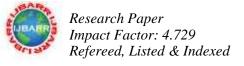

	EPS	MPS	ROCE	ROE	ROA	EVA / CE
Mean	25.4428	8,865	0.2007	0.1780	0.1137	-0.13
Variance	95.240	29813050.31	0.006	0.004	0.001	0.00
Observations	6	6	6	6	6	6
Pearson Correlation	0.3148	-0.2412	0.5540	0.6294	0.7056	
Hypothesized Mean	0	0				
Difference	0	0	0	0	0	
df	5	5	5	5	5	
t Stat	6.4307	3.9770	11.8039	13.4563	12.5313	
P(T<=t) one-tail	0.00068	0.00528	0.00004	0.00002	0.00003	
t Critical one-tail	2.01505	2.01505	2.01505	2.01505	2.01505	
P(T<=t) two-tail	0.00135	0.01056	0.00008	0.00004	0.00006	
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582	

Exhibit –21: T-Test: Two-Sample Assuming Unequal Variances: Shree Cement
--

EPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal). H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal). Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROA & EVA/Capital Employed

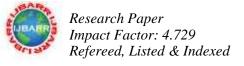

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

EXHIBIT -22. 1	-1030. 1 WU-De	imple rissum	ing Onequa		s. mula cel	nento
	EPS	MPS	ROCE	ROE	ROA	EVA / CE
Mean	2.5445	98.975	0.0808	0.01541	0.007995	-0.11
Variance	33.9422	1,226.11	0.0010	0.0023	0.000384	0.00
Observations	6	6	6	6	6	6
Pearson Correlation	0.38673	-0.19408	0.57492	0.41619	0.43737	
Hypothesized Mean	0	0	0	0	0	
Difference	-		-	-	-	
df	5	5	5	5	5	
t Stat	1.12062	6.93024	14.94826	6.79736	8.93462	
P(T<=t) one-tail	0.15668	0.00048	0.00001	0.00052	0.00015	
t Critical one-tail	2.01505	2.01505	2.01505	2.01505	2.01505	
P(T<=t) two-tail	0.31337	0.00096	0.00002	0.00105	0.00029	
t Critical two-tail	2.570582	2.570582	2.570582	2.57058	2.570582	

EPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value lies between - 2.570582 & + 2.570582. Therefore, we reject Null Hypothesis stating that the variances are equal.

MPS & EVA/Capital Employed

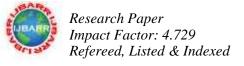
H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROA & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.


	EPS	MPS	ROCE	ROE	ROA	EVA / CE
Mean	-0.3906	68.15	0.0846	-0.01738	-0.0045	-0.0455
Variance	0.76579	774.41800	0.00059	0.00145	0.00009	0.00030
Observations	6	6	6	6	6	6
Pearson Correlation	-0.5342	-0.3931	-0.4088	-0.5315	-0.5310	
Hypothesized Mean	0	0	0	0	0	
Difference	Ŭ	Ŭ	0		Ũ	
df	5	5	5	5	5	
t Stat	-0.956	6.001	9.040	1.386	4.214	
P(T<=t) one-tail	0.192	0.00092	0.00014	0.112	0.004	
t Critical one-tail	2.015	2.015	2.015	2.015	2.015	
P(T<=t) two-tail	0.383	0.002	0.000	0.224	0.008	
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582	

|--|

EPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value lies between - 2.570582 & + 2.570582. Therefore, we reject Null Hypothesis stating that the variances are equal.

ROA & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

Exhibit -24. 1-Test. 1 wo-sample Assuming Unequal Variances. Dinam Cements							
	EPS	MPS	ROCE	ROE	ROA	EVA / CE	
Mean	-13.970	87	0.0284	0.8874	-0.0586	-0.08169	
Variance	45.1566	421	0.0011	3.1390	0.0007	0.0659	
Observations	6	6	6	6	6	6	
Pearson Correlation	0.5457	-0.0744	0.3505	-0.4963	0.5894		
Hypothesized Mean	0	0	0	0			
Difference					0		
df	5	5	5	5	5		
t Stat	-5.1674	10.3388	1.0922	1.2414	0.2344		
P(T<=t) one-tail	0.0018	0.0001	0.1623	0.1348	0.4120		
t Critical one-tail	2.0150	2.0150	2.0150	2.0150	2.0150		
P(T<=t) two-tail	0.0036	0.0001	0.3245	0.2695	0.8240		
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582		

EPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value lies between - 2.570582 & + 2.570582. Therefore, we reject Null Hypothesis stating that the variances are equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value lies between - 2.570582 & + 2.570582. Therefore, we reject Null Hypothesis stating that the variances are equal.

ROA & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value lies between - 2.570582 & + 2.570582. Therefore, we reject Null Hypothesis stating that the variances are equal.

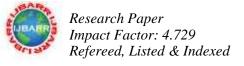

	EPS	MPS	ROCE	ROE	ROA	EVA / CE
Mean	165.108	332	0.1725	0.1407	0.0584	0.0082
Variance	6911.51	34,715	0.003217	0.00335	0.000794	0.001209
Observations	6	6	6	6	6	6
Pearson Correlation	0.6967	0.0924	0.8886	0.9374	0.7677	
Hypothesized Mean	0	0	0	0	0	
Difference	0	0	0	0	U	
df	5	5	5	5	5	
t Stat	4.8659	4.3590	13.2605	11.5712	5.5065	
P(T<=t) one-tail	0.0023	0.0036	0.0000	0.0000	0.0014	
t Critical one-tail	2.0150	2.0150	2.0150	2.0150	2.0150	
P(T<=t) two-tail	0.0046	0.0073	0.0000	0.0001	0.0027	
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582	

Exhibit –25: T-Test: Two-Sample Assuming Unequal Variances: Ramco Cements

EPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

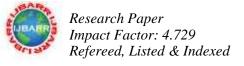
H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROA & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.


Exhibit -20. 1-10st. 1 wo-Sample Assuming Chequat Variances. Diria Corp								
	EPS	MPS	ROCE	ROE	ROA	EVA / CE		
Mean	26.0152	388.75	0.0909	0.0756	0.039	-0.0316		
Variance	45.3905	33,002	0.00087	0.00067	0.00026	0.00101		
Observations	6	6	6	6	6	6		
Pearson	0.7067	-0.0647	0.7264	0.7630	0.5797			
Correlation	0.7067							
Hypothesized	0	0	0	0	0			
Mean Difference	0							
df	5	5	5	5	5			
t Stat	9.50162	5.24210	13.18209	12.73402	6.64975			
P(T<=t) one-tail	0.00011	0.00167	0.00002	0.00003	0.00058			
t Critical one-tail	2.01505	2.01505	2.01505	2.01505	2.01505			
P(T<=t) two-tail	0.00022	0.00335	0.00004	0.00005	0.00116			
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582			

EPS & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

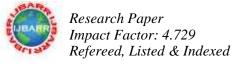
 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between MPS & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between MPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROA & EVA/Capital Employed


H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

	EPS	MPS	ROCE	ROE	ROA	EVA / CE
Mean	2.1391	491	0.1177	0.0903	0.0297	-0.0106
Variance	1.0977	97,066	0.0021	0.0019	0.0004	0.0002
Observations	6	6	6	6	6	6
Pearson Correlation	0.9600	0.1281	0.7627	0.9701	0.7919	
Hypothesized Mean Difference	0	0	0	0	0	
df	5	5	5	5	5	
t Stat	5.08992	3.86042	8.59574	8.23989	7.94244	
P(T<=t) one-tail	0.00190	0.00594	0.00018	0.00021	0.00025	
t Critical one-tail	2.01505	2.01505	2.01505	2.01505	2.01505	
P(T<=t) two-tail	0.00380	0.01187	0.00035	0.00043	0.00051	
t Critical two-tail	2.570582	2.570582	2.570582	2.570582	2.570582	

EPS & EVA/Capital Employed

H₀: $\mu_1^2 = \mu_2^2$ (There is significant relationship between EPS & EVA/CE, Variance is not Equal) H₁: $\mu_1^2 = \mu_2^2$ (There is significant no relationship between EPS & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

MPS & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROCE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 \quad \mu_2^2$ (There is significant no relationship between ROCE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROE & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROE & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROE & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

ROA & EVA/Capital Employed

 $H_0: \mu_1^2 = \mu_2^2$ (There is significant relationship between ROA & EVA/CE, Variance is not Equal) $H_1: \mu_1^2 = \mu_2^2$ (There is significant no relationship between ROA & EVA/CE, Variance is Equal) Here the t Stat value do not lie between - 2.570582 & + 2.570582. Therefore, we accept Null Hypothesis stating that the variances are not equal.

Conclusion

Value based Analysis has proved to be more effective in analysing the Financial performance and Shareholders value and hence it is preferred over the traditional analytical tools. EVA, MVA and EV are considered as the yardstick for calculating the value generated by a firm as it takes into account the Cost of Capital.

ANOVA Findings

The Study Reveals That

- 1. The Mean Value of all the Cement Companies is negative in terms of EVA except Binani Cement. In General the companies are not generating positive EVA from their Operations.
- 2. In terms of NOPAT and Capital Employed Ultratech Cement is in the top position.
- 3. In terms of Debt Equity Ratio Ramco & India Cement have the max ratio while D/E ratio of Ambuja and ACC is the minimum.
- 4. Shree Cement has the maximum WACC wile Binani Cement has the minimum WACC.
- 5. Shree Cement reported the highest mean value in terms of MVA Enterprise Value (EV) and Cash Flow Return on Investment (CFROI).

T-Test Conducted With Selected Cement Firms Revealed That

- 1. There is significant relationship between EPS & EVA/Capital Employed.
- 2. There is significant relationship between MPS & EVA/Capital Employed.
- 3. There is significant relationship between ROCE & EVA/Capital Employed.
- 4. There is significant relationship between ROE & EVA/Capital Employed.
- 5. There is significant relationship between ROA & EVA/Capital Employed.

References

1. **1."Cement-Sector-Analysis",**https://www.equitymaster.com/research-it/sectorinfo/cement/Cement-Sector-Analysis-Report.asp?utm_source=stockquotepage&utm_medium=website&utm_campaign=description&utm_content=sector-report.

- 2. Stern, Joel, "one way to build value in your firm, Executive Compensation", Financial Executive, Nov/Dec. 1990, pp. 51-54.
- 3. Stewart, G. Bennet, " EVATM Fact and Fantasy", Journal of Corporate Finance, Vol. 7, No. 2, June 1994, pp. 71-84.
- 4. Victor A Rice, "Why EVA works for Varity", Chief Executive Magazine, Incorporated, New York, Jan/Feb 1996.
- 5. Rajeshwar, C., "Economic Value Added: Rediscovery Value", Financial Analyst, Dec 1997, pp.39-44.
- 6. Banerjee, Ashok, "Economic Value Added (EVA): a better performance measure", The Management Accountant, Dec 1997, pp. 886-88.
- 7. Chandra Prasanna, "Financial Management Theory and Practice".
- 8. Pandey I.M, "Financial Management, New Delhi".
- 9. Annual Reports of : Ultratech Cement, ACC, Ambuja Cement, Shree Cement, India Cement, Prism Cement, Binani Cement, Ramco Cement, Birla Corp, JK Cement.