

IJBARR E- ISSN -2347-856X ISSN -2348-0653

FORECASTING IMPORTS OF INDIA USING AUTOREGRESSIVE INTEGRATED MOVING AVERAGE

CMA Dr. JeelanBasha.V

Assistant Professor in Commerce, Government First Grade College, Mariyammanahalli, Karnataka.

Abstract

This study attempts to forecast imports of India using Auto Regressive Moving Average (ARMA) and Auto Regressive Integrated Moving Average (ARIMA) models of forecasting. Using data for 1971-72 to 2014-15, imports of India are forecasted for imminent 5 years starting from 2015-16 to 2019-2020. ARMA (2,1,2) are found appropriate for imports of India. Some diagnostic tests are also performed on fitted models and are found well fitted.

INTRODUCTION

Various models have been used in the literature to forecast time series data; however, Auto Regressive Integrated Moving Average (ARIMA) technique is used by this study to forecast imports of India. It is the most general form of stochastic models for analysing time series data. The ARIMA models include Auto Regressive (AR) terms, Moving Average (MA) terms and differencing (or integrated) operations. The model is called AR model if it contains only the Auto Regressive terms. Model is known as MA model if it involves only the moving average terms. It is known as ARMA models when both Auto Regressive and Moving Average are involved. Finally when non-stationary series is made stationary by differencing method, it is known as ARIMA model. The general form of ARIMA is denoted by ARIMA (p,d,q), where 'p' represents the order of auto regressive , 'q' represents the order of moving average process, while 'd' shows the order of differencing the series to make it stationary.

In this study Box-Jenkins (1976) procedure of ARIMA modelling i,e. Identification, estimation, diagnostic checking and forecasting time series data of Indian imports is used. The ARIMA modelling procedure starts with identification of the model; however stationarity of the variables of interest is also required. The stationarity can be tested both through graphical method viz. Correlogram (i,e. Partial Autocorrelation Function (PACF) and Autocorrelation Function (ACF)) and other through formal technique namely Augmented Dickey-Fuller Test (ADF) of Unit Root. If the variables of interest are found non-stationary at level, the data need information such way to make them stationary. The model can be identified through correlogram (PACF and ACF) and Augmented Dickey-Fuller Test (ADF) of Unit Root. After the identification of the model, the next step is the estimation of model parameters which is done through Ordinary Least Square (OLS) method. Moving further various diagnostic tests are used on residual of the model like correlogram of residuals (Q statistic probabilities adjusted for 1 ARMA terms, correlogram of squared residuals, histogram of normality test and serial correlation LM test. If the model passes successfully through these diagnostic tests, then the estimated coefficients of forecasting can be used for the future values.

OBJECTIVE: The objective of the study is to forecast of imports of India for the impending 2015-2020.

DATA AND METHODOLOGY

The study is based on secondary data for forecasting of Indian imports. The data has been collected from rbi.org and other sources. The study covers data from 1970-71 to 2014-15. This data has been converted into log imports to maintain time consistency.

RESULTS AND DISCUSSIONS

The results of correlogram of 1 difference level of log of Indian imports and the unit root test for it are given in Table-1 and 2 respectively. The results depict that ACFs were suffered from linear decline and hence, series of Indian imports are non-stationary at level. It was made stationary by taking first order differencing of log of Indian imports. It was evident from the results of ADF statics that null hypothesis of unit root test has been denied since ADF t static prob. is less than 0.05. Therefore, ARMA model has been used for forecasting Indian imports whereas; ARIMA model was employed to forecast Indian imports.

1 able-1, Correlogram of 1 difference level of log of Imports of India											
Date: 10/14/15 Time: 06:46											
Sample: 1 50											
Included observations	: 42										
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob					
.* .	.* .	1	-0.194	-0.194	1.6886	0.194					

Table-1,Correlogram of 1 difference level of log of Imports of India

** .	*** .	2	-0.295	-0.345	5.7039	0.058
. .	**	3	-0.044	-0.222	5.7971	0.122
. .	.* .	4	0.017	-0.198	5.8116	0.214
. .	**	5	-0.025	-0.211	5.8433	0.322
. *.	. .	6	0.166	0.034	7.2632	0.297
. .	. .	7	0.036	0.048	7.3323	0.395
.* .	.* .	8	-0.189	-0.100	9.2646	0.320
. .	. .	9	0.029	0.017	9.3105	0.409
. .	. .	10	0.059	0.003	9.5140	0.484
.* .	.* .	11	-0.080	-0.093	9.8960	0.540
. .	. .	12	0.038	-0.029	9.9850	0.617
. .	· * · · ·	13	-0.057	-0.178	10.194	0.678
.* .	**	14	-0.086	-0.208	10.677	0.711
. *.	. .	15	0.167	0.004	12.586	0.634
. *.	. *.	16	0.135	0.089	13.879	0.608
.* .	. .	17	-0.166	-0.014	15.913	0.530
	. *.	18	-0.004	0.104	15.915	0.598
. *.	. *.	19	0.092	0.161	16.594	0.617
.* .		20	-0.094	0.049	17.340	0.631

Table -2 Unit Root Test

Null Hypothesis: D(LNIM) has a unit root										
Exogenous: Constant										
Lag Length: 0 (Automatic - based on SIC, maxlag=9)										
t-Statistic Prob.*										
Augmented Dickey-Fuller test statistic			-5.21213	0.0001						
Test critical values:	1% level		-3.59662							
	5% level		-2.93316							
	10% level		-2.60487							
*MacKinnon (1996) one-sided p-values.										
Augmented Dickey-Fuller Test Equation										
Dependent Variable: D(LNIM,2)										
Method: Least Squares										
Date: 10/12/15 Time: 22:29										
Sample (adjusted): 3 44										
Included observations: 42 after adjustment	nts									
Variable	Coefficient	Std. Error	t-Statistic	Prob.						
D(LNIM(-1))	-0.81374	0.156124	-5.21213	0						
С	0.141149	0.0324	4.356463	0.0001						
R-squared	0.404463	Mean dependent var		-0.00039						
Adjusted R-squared	0.389575	S.D. dependent var		0.14659						
S.E. of regression	0.114531	Akaike info criterion		-1.4495						
Sum squared resid	0.524691	Schwarz criterion		-1.36675						
x 1'1 1'1 1	22,4205	Hannan-Quinn		1 4101-						
Log likelihood	32.4395	criter.		-1.41917						
F-statistic	27.1663	Durbin-Watson stat		1.496328						
Prob(F-statistic)	0.000006									

IJBARR E- ISSN -2347-856X ISSN -2348-0653

Using diverse values of p and q, a range of ARIMA model has been fitted in order to choose appropriate model. Appropriate model was selected based on certain selection criterion namely R^2 , adjusted R^2 Standard Error Regression (SEE), Akaike Information criterion (AIC) Schwarz-Bayesian Information (SBIC). Consequently, ARMA was found appropriate for imports of India. The parameters estimate for imports of India are given in table-3A,3B 3C &3D.

			1	1	
ARIMA odel(p,d,q,)	\mathbf{R}^2	Adjusted R ²	SEE	AIC	SIC
(1'1'0)	0.162695	0.119756	0.108008	-1.54448	-1.42036
(2'1'0)	0.181829	0.138767	0.099502	-1.70691	-1.58153
(0'1'1)	0.079784	0.05734	0.112653	-1.48362	-1.4017
(1'1'1)	0.162695	0.119756	0.108008	-1.54448	-1.42036
(2'1'1)	0.216555	0.153033	0.098675	-1.7015	-1.53433
(2'1'2)	0.323566	0.248407	0.092953	-1.79959	-1.59062
(1'1'2)	0.163419	0.097373	0.109372	-1.49773	-1.33224
(3'1'2)	0.167595	0.045182	0.097915	-1.67196	-1.41863
(2'1'3)	0.29563	0.195006	0.096199	-1.71034	-1.45957
(3'1'3)	0.471845	0.375817	0.079167	-2.07689	-1.78134

	Table 3A- Selection	of model based	on Estimates of im	ports of India parameters
--	---------------------	----------------	--------------------	---------------------------

Table 3B -Graphical ARMA structure

Inverse Roots of AR/MA Polynomial(s)

Table 3D -parameters of selected model estimate for imports of India

Dependent Variable: NLNIM								
Method: Least Squares								
		Date: 10/14/	15 Time: 07:29					
Sample (adjusted): 4 4	4							
Included observations	: 41 after adjus	tments						
Convergence achieved	l after 18 iterat	ions						
MA Backcast: 2 3				_				
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	0.162051	0.016693	9.707951	0				
AR(1)	0.62156	0.074822	8.307182	0				
AR(2)	-0.75924	0.070772	-10.72795	0				
MA(1)	-0.6199	0.058979	-10.51049	0				
MA(2)	0.924896	0.037103	24.92812	0				
R-squared	0.323566	Mean dep	endent var	0.166583				
Adjusted R-squared	0.248407	S.D. depe	ndent var	0.107219				
S.E. of regression	0.092953	Akaike in	fo criterion	-1.79959				
Sum squared resid	0.311052	Schwarz	criterion	-1.59062				
Log likelihood	41.89157	Hannan-Q	Quinn criter.	-1.72349				
F-statistic	4.305066	Durbin-W	atson stat	1.696275				
Prob(F-statistic)	0.005999							
Inverted AR Roots	.3181i	.31+.81i						
		.31-						
Inverted MA Roots	.31+.91i	.91i						

The ARIMA model (2'1'2) was fitted and estimated, the next step in Box-Jenkins (1976) procedure was diagnostic checking of the fitted models. For this purpose, residual diagnostic checking was done through correlogram of residuals (Q statistic probabilities adjusted for 4 ARMA terms), histogram of normality test and serial correlation LM test. The results of diagnostic checking are shown in Table-4A, 4B & 4C. The results of imports of India from those tables were found within the limits which indicated that model was well fitted.

 Table-4 Residual Diagnostic Checking

 Table-4A Q-statistic probabilities adjusted for 4 ARMA term(s)

Table 41 Q-statistic probabilities aujusted for 4 minut term(s)									
Date: 10/13/15 Time	e: 21:01								
Sample: 4 44									
Included observation	s: 41								
Q-statistic probabiliti	es adjusted for 4 ARMA term(s)							
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob			
. *.	. *.	1	0.111	0.111	0.5452				
.* .	.* .	2	-0.13	-0.145	1.3136				
. *.	. *.	3	0.082	0.118	1.6244				
. .	. .	4	-0.016	-0.065	1.6371				
.* .	.* .	5	-0.122	-0.086	2.3673	0.124			

1		1	1			
.* .	.* .	6	-0.135	-0.134	3.2843	0.194
. .	. .	7	-0.039	-0.029	3.3629	0.339
.* .	.* .	8	-0.127	-0.149	4.2187	0.377
.* .	.* .	9	-0.125	-0.092	5.0842	0.406
.* .	** .	10	-0.169	-0.224	6.7078	0.349
.* .	.* .	11	-0.094	-0.114	7.224	0.406
. *.		12	0.135	0.07	8.3379	0.401
. *.	. *.	13	0.16	0.1	9.9513	0.354
. .	.* .	14	-0.028	-0.093	10.002	0.44
. *.	. *.	15	0.145	0.114	11.421	0.409
. **	. *.	16	0.216	0.088	14.703	0.258
		17	-0.051	-0.06	14.894	0.314
	. *.	18	0.045	0.09	15.05	0.375
	.* .	19	-0.061	-0.165	15.345	0.427
.* .	.* .	20	-0.193	-0.179	18.486	0.296

С	0.000295		0.017064	0.017272	0.9863
AR(1)	-0.01049		0.087409	-0.120007	0.9052
AR(2)	0.022689		0.074045	0.306417	0.7612
MA(1)	0.000419		0.060593	0.006918	0.9945
MA(2)	0.004118		0.037802	0.108948	0.9139
RESID(-1)	0.142183		0.199744	0.711827	0.4814
RESID(-2)	-0.17509		0.202683	-0.86388	0.3937
R-squared	0.038462	Mean dependent var			0.000791
Adjusted R-					
squared	-0.13122	S.D. dependent var			0.08818
S.E. of regression	0.093787	Akaike info criterion			-1.74133
Sum squared resid	0.299063	Schwarz criterion			-1.44877
Log likelihood	42.69729	Hannan-Quinn criter.			-1.6348
F-statistic	0.22667	Durbin-Watson stat			1.904905
Prob(F-statistic)	0.965232				

Using parameter estimate of the fitted model, forecast of imports of India for the years 2015-16 to 2019-20 was estimated and presented in Table 5.

	Table-5 Forecast of Imports of India									
Table-5	Table-5A Imports of India including forecast during 1972-2021									
						_				

Year	Imports	Year	Imports	Year	Imports	Year	Imports	Year	Imports
1971-72	18.245	1981-82	136.076	1991-92	478.508	2001-02	2451.997	2011-12	23454.63
1972-73	18.674	1982-83	142.927	1992-93	633.745	2002-03	2972.059	2012-13	26691.62
1973-74	29.554	1983-84	158.315	1993-94	731.01	2003-04	3591.077	2013-14	27154.34
1974-75	45.188	1984-85	171.342	1994-95	899.707	2004-05	5010.645	2014-15	27340.49
1975-76	52.648	1985-86	196.577	1995-96	1226.781	2005-06	6604.089	2015-16	27341.67
1976-77	50.738	1986-87	200.958	1996-97	1389.197	2006-07	8405.063	2016-17	27342.84
1977-78	60.202	1987-88	222.437	1997-98	1541.763	2007-08	10123.12	2017-18	27344.02
1978-79	68.106	1988-89	282.352	1998-99	1783.319	2008-09	13744.36	2018-19	27345.19
1979-80	91.426	1989-90	353.284	1999-00	2152.365	2009-10	13637.36	2019-2020	27346.37
1980-81	125.492	1990-91	431.929	2000-01	2308.728	2010-11	16834.67	2020-2021	27346.37

Table-5A Graphical Imports of India including forecast

International Journal of Business and Administration Research Review, Vol. 3, Issue.11, July - Sep, 2015. Page 234

CONCLUSION

One of the main objectives of the study is to forecast the imports of India. ARIMA model is used for this purpose. Time series data of 43 years (1971-2015) is used in this study. All essential steps of ARIMA modelling is systematically followed to forecast Indian imports from 2015-2020. These forecast values could be used for formulating EXIM policy especially at national level. These models use the historical time series data for forecasting. However, there could be other factors affecting imports viz. Economic condition, monsoon, technological innovation, foreign policy etc. Consequently, future thrust of this study is to apply other available models of forecasting which have features of incorporating more information to forecast imports of India.

The study is used univariate analysis of forecasting; however this does not mean that the technique supersedes multivariate techniques. ARIMA does not perform well in case of volatile series. Moreover, ARIMA models of forecasting are backward looking and do not perform better during forecasting at turning points.

BIBLIOGRAPHY

- 1. D. Balangammal, C.R. Ranganathan, and R. Sundaresan, "Forecasting of Agriculture Scenario in Tamilnadu- a time series analysis", Journal of Indian Society of Agriculture Statistics, Vol. 5. No. 4, pp-477-482, 2012.
- 2. G.E.Box and G.M. Jenkins, Time series Analysis, Forecasting and Control, Holden-day, San Fransisco, Calif, Usa, 1970.
- 3. Venugopalan R. And M. Srinath, (1998) Modelling and forecast of fish catches: Comparison of regression, univariate multivariate Time series methods: Indian Journal of Fisheries,45(3)227-237.
- 4. H.B mann, "Nonparametric tests against trend," Econometrica, vol.13, pp.245-259, 1945
- 5. H.Akaik, "A new book at the statistical model identification", IEEE transaction on Autometic control, vol.19, No. 6, Pp. 716-723, 1974.
- 6. A. Hirotsugu, "likelihood and the Bayesian Statistics", J.M. Bernado, M.H. DeGroot, D.V. Lindley, et. Al. Eds. Pp. 143-166, University bpress, Valencia, Spain, 1990.